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Problem 1

A line in the plane is called sunny if it is not parallel to any of the x-axis, the y-axis,
and the line x+ y = 0.

Let n ⩾ 3 be a given integer. Determine all nonnegative integers k such that there
exist n distinct lines in the plane satisfying both of the following:

• for all positive integers a and b with a + b ⩽ n + 1, the point (a, b) is on at
least one of the lines; and

• exactly k of the n lines are sunny.

Let n ⩾ 3 be a given integer. We want to determine all nonnegative integers k such
that there exist n distinct lines in the plane that cover the set of points Pn = {(a, b) ∈
Z+ × Z+ : a+ b ⩽ n+ 1}, and exactly k of these lines are sunny. A line is sunny if it is
not parallel to the x-axis (Horizontal, H), the y-axis (Vertical, V), or the line x+ y = 0
(Diagonal, D, slope −1). Lines of these three types are called shady.

We will show that the possible values for k are {0, 1, 3}.

The proof relies on reducing the problem to the specific case where n = k and all lines
must be sunny. Let C(k) be the assertion that Pk can be covered by k distinct sunny
lines. We define P0 = ∅.

1. The Reduction Principle

Let L be a set of n distinct lines covering Pn. Let k be the number of sunny lines. Let
NV , NH , ND be the number of V, H, D lines in L, respectively. Then NV +NH +ND =
n− k.

Lemma 1 (Structural Lemma). The NV vertical lines in L must be {x = 1, . . . , x =
NV }. The NH horizontal lines must be {y = 1, . . . , y = NH}. The ND diagonal lines
must be {x+ y = s} for s = n+ 2−ND, . . . , n+ 1.

Proof. Consider the column Ca = Pn ∩ {x = a}. We have |Ca| = n + 1 − a. Suppose
the line x = a is not in L. The points in Ca must be covered by the other lines in L.
The NV vertical lines in L are distinct from x = a, so they do not cover any point in
Ca. The remaining n−NV non-vertical lines each cover at most one point in Ca. Thus,
|Ca| ≤ n−NV . n+ 1− a ≤ n−NV , which implies a ≥ NV + 1. By contraposition, if
1 ≤ a ≤ NV , the line x = a must be in L. Since there are exactly NV vertical lines in L,
these must be {x = 1, . . . , x = NV }. The argument for horizontal lines is symmetric.

For diagonal lines, consider the anti-diagonal Ds = Pn∩{x+y = s}. We have |Ds| = s−1.
If x+ y = s is not in L, the points in Ds must be covered by the n−ND lines with slope
̸= −1. Thus, s− 1 ≤ n−ND, so s ≤ n+ 1−ND. By contraposition, if s ≥ n+ 2−ND,
the line x+ y = s must be in L.

Theorem 1 (Reduction Theorem). For n ≥ 3 and 0 ≤ k ≤ n, a configuration of n
distinct lines covering Pn with exactly k sunny lines exists if and only if C(k) is true.

Proof. (⇒) Let L be such a configuration. Let NV , NH , ND be the counts of the shady
lines, NV + NH + ND = n − k. By Lemma 1, the set of shady lines N is determined.
Let R be the set of points in Pn not covered by N . R = {(a, b) ∈ Pn | a > NV , b >

1



Gemini Deep Think for International Mathematical Olympiad 2025

NH , a + b ≤ n + 1 − ND}. The k sunny lines S ⊂ L must cover R. Consider the
translation T (a, b) = (a−NV , b−NH) = (a′, b′). If (a, b) ∈ R, then a′ ≥ 1, b′ ≥ 1. Also,
a′ + b′ = a+ b− (NV +NH) ≤ (n+ 1−ND)− (NV +NH) = n+ 1− (n− k) = k + 1. T
maps R bijectively to Pk. The translated lines T (S) cover Pk. Since translation preserves
slopes, these k lines are distinct and sunny. Thus C(k) is true.

(⇐) Suppose C(k) is true. Let Lk be k distinct sunny lines covering Pk. Let N = n− k.
We construct a configuration for Pn. Let N be the set of N diagonal lines {x+ y = s |
s = k+2, . . . , n+1}. Let L = Lk ∪N . This set has n lines. They are distinct since lines
in Lk have slope ̸= −1 and lines in N have slope −1. They cover Pn. If (a, b) ∈ Pn, then
2 ≤ a+b ≤ n+1. If a+b ≤ k+1, then (a, b) ∈ Pk, covered by Lk. If k+2 ≤ a+b ≤ n+1,
then (a, b) is covered by N . The configuration has exactly k sunny lines.

2. Analysis of the Core Problem C(k)

We determine the values of k ≥ 0 for which Pk can be covered by k distinct sunny lines.

1. k = 0. P0 = ∅. Covered by 0 lines. C(0) is true. 2. k = 1. P1 = {(1, 1)}. Covered
by y = x (slope 1, sunny). C(1) is true. 3. k = 2. P2 = {(1, 1), (1, 2), (2, 1)}. The lines
connecting any pair of these points are x = 1 (V), y = 1 (H), or x+ y = 3 (D). All are
shady. A sunny line can cover at most one point of P2. To cover the 3 points, we need at
least 3 sunny lines. Thus C(2) is false.

4. k ≥ 3. Let Tk be the convex hull of Pk. Tk is the triangle with vertices V1 = (1, 1), V2 =
(1, k), V3 = (k, 1). The edges of Tk lie on the lines x = 1 (V), y = 1 (H), and x+ y = k+1
(D). These lines are shady.

Let Bk be the set of points in Pk lying on the boundary of Tk. Each edge contains k
points. Since the vertices are distinct (as k ≥ 2), the total number of points on the
boundary is |Bk| = 3k − 3.

Suppose Pk is covered by k sunny lines Lk. These lines must cover Bk. Let L ∈ Lk. Since
L is sunny, it does not coincide with the lines containing the edges of Tk. A line that
does not contain an edge of a convex polygon intersects the boundary of the polygon at
most at two points. Thus, |L ∩Bk| ≤ 2. The total coverage of Bk by Lk is at most 2k.
We must have |Bk| ≤ 2k. 3k − 3 ≤ 2k, which implies k ≤ 3.

Since we assumed k ≥ 3, we must have k = 3.

5. k = 3. We verify C(3). P3 consists of 6 points: (1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (3, 1).
We provide a covering with 3 sunny lines: L1 : y = x (slope 1). Covers (1, 1), (2, 2).
L2 : 2x+ y = 5 (slope −2). Covers (1, 3), (2, 1). L3 : x+ 2y = 5 (slope −1/2). Covers
(1, 2), (3, 1). These lines are sunny and cover P3. C(3) is true.

3. Conclusion

The property C(k) is true if and only if k ∈ {0, 1, 3}. By the Reduction Theorem, for
a given n ≥ 3, a configuration with k sunny lines exists if and only if C(k) is true and
k ≤ n. Since n ≥ 3, the condition k ≤ n is satisfied for all k ∈ {0, 1, 3}.

The possible values for k are 0, 1, and 3.
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Problem 2

Let Ω and Γ be circles with centres M and N , respectively, such that the radius
of Ω is less than the radius of Γ. Suppose circles Ω and Γ intersect at two distinct
points A and B. Line MN intersects Ω at C and Γ at D, such that points C, M ,
N and D lie on the line in that order. Let P be the circumcentre of triangle ACD.
Line AP intersects Ω again at E ̸= A. Line AP intersects Γ again at F ̸= A. Let H
be the orthocentre of triangle PMN .

Prove that the line through H parallel to AP is tangent to the circumcircle of
triangle BEF .

(The orthocentre of a triangle is the point of intersection of its altitudes.)

Complete Proof

1. Identification of P as the Excenter of △AMN .

Let R1 and R2 be the radii of Ω (center M) and Γ (center N) respectively, with R1 < R2.
P is the circumcenter of △ACD, so PA = PC. Since A,C ∈ Ω, MA = MC = R1. Thus
PM is the perpendicular bisector of AC and bisects ∠AMC. The points C,M,N,D
are collinear in this order. This implies that the ray MC is opposite to the ray MN .
Therefore, ∠AMC and ∠AMN are supplementary. ∠AMC is the exterior angle of
△AMN at M . Since PM bisects ∠AMC, PM is the external angle bisector of △AMN
at M .

Similarly, PA = PD and NA = ND = R2. PN is the perpendicular bisector of AD
and bisects ∠AND. Since M,N,D are in order, the ray ND is opposite to the ray NM .
Thus, ∠AND is the exterior angle of △AMN at N . PN is the external angle bisector
of △AMN at N .

Therefore, P is the excenter of △AMN opposite to A. Consequently, the line AP is
the internal angle bisector of ∠MAN . Let ∠MAN = 2ϕ. Since the circles intersect
at two distinct points A and B, △AMN is non-degenerate, so 0 < 2ϕ < 180◦, i.e.,
0 < ϕ < 90◦.

2. Determining ∠EBF .

By symmetry with respect to the line MN , △BMN ∼= △AMN . Thus ∠MBN =
∠MAN = 2ϕ.

We use directed angles modulo 180◦. Let TM (B) and TN (B) be the tangents to Ω and Γ
at B, respectively. Since TM (B) ⊥ MB and TN (B) ⊥ NB, we have ∡(TM (B), TN (B)) =
∡(MB,NB).

By the Tangent-Chord Theorem: In Ω, ∡(TM (B), BE) = ∡(AB,AE). In Γ, ∡(TN (B), BF ) =
∡(AB,AF ). Since A,E, F are collinear on the line AP , the lines AE and AF are the
same. Thus ∡(AB,AE) = ∡(AB,AF ).

We compute ∡(BE,BF ): ∡(BE,BF ) = ∡(BE, TM (B))+∡(TM (B), TN (B))+∡(TN (B), BF )
= −∡(AB,AE)+∡(MB,NB)+∡(AB,AF ) = ∡(MB,NB). Thus, the geometric angle
∠EBF = ∠MBN = 2ϕ.
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Since R1 ̸= R2, △AMN is not isosceles, so AP (the angle bisector) is distinct from the
altitude from A. Since AB is perpendicular to MN , AB is the altitude line. Thus B is
not on AP . Also R1 ̸= R2 implies E ̸= F . Thus △BEF is non-degenerate. Let Σ be its
circumcircle.

3. Introduction of the Auxiliary Point V and its properties.

Let V be the point such that AMVN is a parallelogram. We use vectors originating
from A. A⃗V = A⃗M + A⃗N .

We calculate the lengths of AE and AF . In △AME, MA = ME = R1 and ∠MAE = ϕ.
Thus AE = 2R1 cosϕ. Similarly, AF = 2R2 cosϕ. Since R1 < R2 and cosϕ > 0, AE <
AF . A,E, F are collinear in this order on AP . EF = AF −AE = 2(R2 −R1) cosϕ.

We calculate the distances V E and V F . V⃗ E = A⃗E − A⃗V = A⃗E − (A⃗M + A⃗N).
V E2 = AE2+AM2+AN2− 2A⃗E · A⃗M − 2A⃗E · A⃗N +2A⃗M · A⃗N . AM = R1, AN = R2.
∠MAN = 2ϕ. ∠MAE = ∠NAE = ϕ. A⃗E·A⃗M = AE·R1 cosϕ = 2R2

1 cos
2 ϕ. A⃗E·A⃗N =

AE ·R2 cosϕ = 2R1R2 cos
2 ϕ. A⃗M · A⃗N = R1R2 cos(2ϕ) = R1R2(2 cos

2 ϕ− 1).

V E2 = (2R1 cosϕ)
2+R2

1+R2
2−4R2

1 cos
2 ϕ−4R1R2 cos

2 ϕ+2R1R2(2 cos
2 ϕ−1). V E2 =

R2
1+R2

2−4R1R2 cos
2 ϕ+4R1R2 cos

2 ϕ−2R1R2. V E2 = R2
1+R2

2−2R1R2 = (R2−R1)
2.

So V E = R2 −R1. A similar calculation shows V F = R2 −R1. Thus V E = V F .

4. V lies on the circumcircle Σ.

We calculate ∠EV F using the Law of Cosines in the isosceles triangle △EV F . EF 2 =
V E2 + V F 2 − 2V E · V F cos(∠EV F ) = 2V E2(1− cos(∠EV F )). (2(R2 −R1) cosϕ)

2 =
2(R2−R1)

2(1−cos(∠EV F )). 4 cos2 ϕ = 2(1−cos(∠EV F )). cos(∠EV F ) = 1−2 cos2 ϕ =
− cos(2ϕ). Since 2ϕ ∈ (0, 180◦), ∠EV F = 180◦ − 2ϕ.

We have ∠EBF +∠EV F = 2ϕ+ (180◦ − 2ϕ) = 180◦. To conclude that BEV F is cyclic,
we must verify that B and V lie on opposite sides of the line AP . We set up a coordinate
system with A at the origin (0, 0) and AP along the positive x-axis. We can orient it
such that M = (R1 cosϕ,R1 sinϕ) and N = (R2 cosϕ,−R2 sinϕ). Then V = M +N has
y-coordinate yV = (R1 −R2) sinϕ. Since R1 < R2 and ϕ > 0, yV < 0.

B is the reflection of A across the line MN . The line MN has the equation y − yM =
m(x− xM ), where the slope is m = −(R1+R2) sinϕ

(R2−R1) cosϕ
. The y-intercept b (intersection with

the axis perpendicular to AP through A) is yM − mxM . b = R1 sinϕ − mR1 cosϕ =

R1 sinϕ+ R1(R1+R2) sinϕ
R2−R1

= 2R1R2 sinϕ
R2−R1

. Since Ri > 0 and sinϕ > 0, b > 0. The line MN
passes ”above” A with respect to the y-axis. The reflection B of A(0, 0) across the line
y = mx+ b has y-coordinate yB = 2b/(m2 + 1) > 0. Since yV < 0 and yB > 0, V and B
are on opposite sides of AP . Thus, BEV F is cyclic, and V lies on Σ.

5. The Orthocenter H and the Tangency Condition.

Let I be the incenter of △AMN . Since P is the excenter opposite to A, the points
A, I, P are collinear on the line AP . The internal bisector MI and the external bisector
MP at M are perpendicular. Similarly, NI ⊥ NP . Thus, the quadrilateral IMPN is
cyclic. This circle is the circumcircle of △PMN . Let O be its center. IP is the diameter,
so O is the midpoint of IP .

H is the orthocenter of △PMN . By Sylvester’s theorem relating the circumcenter O and
the orthocenter H, we have (using vectors originating from A): A⃗H = A⃗P + A⃗M + A⃗N −
2A⃗O. By definition of V , A⃗V = A⃗M + A⃗N . A⃗H = A⃗P + A⃗V − 2A⃗O. The vector from V
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to H is ⃗V H = A⃗H − A⃗V = A⃗P − 2A⃗O. Since O is the midpoint of IP , 2A⃗O = A⃗I + A⃗P .
⃗V H = A⃗P − (A⃗I + A⃗P ) = −A⃗I = I⃗A.

Since I and A lie on the line AP , the vector I⃗A is parallel to AP . Thus, the line segment
V H is parallel to AP . The line through H parallel to AP is the line V H.

We must show that the line V H is tangent to Σ. Since V ∈ Σ (Step 4), it suffices to
show that V H is perpendicular to the radius at V . Let OΣ be the center of Σ. We need
to show V H ⊥ OΣV . Since V H ∥ AP , we need AP ⊥ OΣV . The points E,F lie on AP .
In Step 3, we proved V E = V F . Thus V lies on the perpendicular bisector of the chord
EF . OΣ also lies on this bisector. Therefore, the line OΣV is the perpendicular bisector
of EF . Thus OΣV ⊥ EF . Since EF lies on AP , OΣV ⊥ AP .

We conclude that V H ⊥ OΣV . Therefore, the line V H, which is the line through H
parallel to AP , is tangent to the circumcircle of triangle BEF at V .
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Problem 3

Let N denote the set of positive integers. A function f : N → N is said to be bonza if

f(a) divides ba − f(b)f(a)

for all positive integers a and b.

Determine the smallest real constant c such that f(n) ⩽ cn for all bonza functions
f and all positive integers n.

We want to determine the smallest real constant c such that f(n) ⩽ cn for all bonza
functions f : N → N and all n ∈ N. A function f is bonza if f(a) | ba − f(b)f(a) for all
a, b ∈ N. Let P (a, b) denote this assertion.

We will show that the smallest constant is c = 4.

Part 1: Properties and Classification of Bonza Functions

First, we establish some basic properties. P (a, a) implies f(a) | aa. P (1, 1) implies
f(1) = 1. Let S be the set of primes p such that f(p) > 1. Since f(p) | pp, if p ∈ S, then
f(p) = pk for some k ≥ 1.

Lemma 1: If p ∈ S, then f(b) ≡ b (mod p) for all b ∈ N. Proof: P (p, b) =⇒ f(p) |
bp − f(b)f(p). Since p ∈ S, p | f(p). Thus bp ≡ f(b)f(p) (mod p). By Fermat’s Little
Theorem (FLT), bp ≡ b (mod p). Since f(p) is a power of p, applying FLT repeatedly
yields f(b)f(p) ≡ f(b) (mod p). Thus, b ≡ f(b) (mod p).

Lemma 2 (Classification): The set S is either the set of all primes P, the empty set
∅, or the singleton set {2}. Proof: Case 1: S is infinite. By Lemma 1, for any b ∈ N,
f(b)− b is divisible by every prime in S. Since S is infinite, f(b)− b = 0, so f(b) = b for
all b. Then f(p) = p > 1 for all primes p, so S = P.

Case 2: S is finite. Let M =
∏

p∈S p. (If S = ∅, M = 1). Let q be a prime not in S.
Then f(q) = 1. If S is non-empty, for any p ∈ S, Lemma 1 gives 1 = f(q) ≡ q (mod p).
Thus q ≡ 1 (mod M).

Suppose S is finite and non-empty. Then M ≥ 2. Suppose M > 2. Consider A = M − 1.
Since M > 2, 1 < A < M . We have gcd(A,M) = 1. Let q0 be any prime factor of A.
Then q0 ∤ M , so q0 /∈ S. Thus q0 ≡ 1 (mod M). This implies M | q0 − 1, so M ≤ q0 − 1.
Since q0 | A, q0 ≤ A = M − 1. Combining these gives M ≤ q0− 1 ≤ (M − 1)− 1 = M − 2.
M ≤ M − 2, which is a contradiction. Therefore, if S is finite and non-empty, we must
have M = 2. This means S = {2}. If S is empty, M = 1.

Part 2: Establishing the Upper Bound c ≤ 4

We analyze the three cases from Lemma 2.

Case 1: S = P. We found f(n) = n. Then f(n)/n = 1.

Case 2: S = ∅. f(p) = 1 for all primes p. Let n ∈ N. If f(n) > 1, let q be a prime factor
of f(n). Since f(n) | nn, q | n. P (n, q) =⇒ f(n) | qn − f(q)f(n). Since q /∈ S, f(q) = 1.
So f(n) | qn − 1. Since q | f(n), q | qn − 1. As q | n, q | qn. Thus q | 1. Contradiction. So
f(n) = 1 for all n. f(n)/n ≤ 1.
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Case 3: S = {2}. f(2) > 1, and f(p) = 1 for all odd primes p. First, we show f(n)
is a power of 2 for all n. Let q be an odd prime factor of f(n). Then q | n. f(q) = 1.
P (n, q) =⇒ f(n) | qn − f(q)f(n) = qn − 1. Since q | f(n), q | qn − 1. This is impossible
as q | n implies q | qn. Thus f(n) is a power of 2.

If n is odd, f(n) | nn (odd). So f(n) = 1.

If n is even. Let n = 2km, where k = v2(n) ≥ 1 and m is odd. Let f(n) = 2e. Let b be
any odd integer. f(b) = 1. P (n, b) =⇒ f(n) | bn − f(b)f(n) = bn − 1. So 2e | bn − 1.
Thus e ≤ minb odd v2(b

n − 1).

We need the following lemma to analyze the 2-adic valuation.

Lemma 3: Let X be an odd integer and K ≥ 1 an integer. Then v2(X
2K − 1) =

v2(X
2 − 1) +K − 1. Proof: We use induction on K. Base case K = 1: v2(X

2 − 1) =
v2(X

2 − 1) + 1 − 1. Inductive step: Assume it holds for K ≥ 1. We check K + 1.

v2(X
2K+1 −1) = v2((X

2K −1)(X2K +1)). Since X is odd, X2 ≡ 1 (mod 8). Since K ≥ 1,

X2K = (X2)2
K−1 ≡ 12

K−1
= 1 (mod 8). Thus X2K +1 ≡ 2 (mod 8), so v2(X

2K +1) = 1.

v2(X
2K+1 − 1) = v2(X

2K − 1) + 1 = (v2(X
2 − 1) +K − 1) + 1 = v2(X

2 − 1) +K.

Now we analyze v2(b
n − 1) = v2(b

2km − 1). Let X = bm. Since b,m are odd, X is

odd. By Lemma 3 (with K = k), v2(b
n − 1) = v2(X

2k − 1) = v2(X
2 − 1) + k − 1.

We want to minimize this over odd b. X2 − 1 = b2m − 1. Since bm is odd, (bm)2 ≡ 1
(mod 8), so v2(b

2m − 1) ≥ 3. The minimum is achieved when b = 3. We calculate
v2(3

2m − 1) = v2(9
m − 1). 9m − 1 = (9 − 1)(9m−1 + · · · + 1). The second factor is a

sum of m odd terms. Since m is odd, the sum is odd. v2(9
m − 1) = v2(8) = 3. Thus,

minb odd v2(b
n − 1) = 3 + (k − 1) = k + 2. So e ≤ k + 2.

The ratio is f(n)
n = 2e

2km
≤ 2k+2

2km
= 4

m . Since m ≥ 1, f(n)/n ≤ 4.

In all cases, f(n) ≤ 4n for all bonza functions f . Thus c ≤ 4.

Part 3: Construction and Lower Bound c ≥ 4

We construct a bonza function g(n) that achieves the bound 4. Define g(n) as follows:

g(n) =


1 if n is odd

16 if n = 4

2 if n is even and n ̸= 4

For n = 4, g(4) = 16, so g(4)/4 = 4. If g is bonza, then c ≥ 4.

We verify that g is bonza. We check g(a) | ba − g(b)g(a).

Case 1: a is odd. g(a) = 1. The condition holds trivially.

Case 2: a = 4. g(4) = 16. We need 16 | b4 − g(b)16. If b is odd, g(b) = 1. We need
16 | b4 − 1. For any odd b, b2 (mod 16) is in {1, 9}. So b4 ≡ 1 (mod 16). If b is even,
v2(b) ≥ 1. v2(b

4) ≥ 4. So 16 | b4. g(b) is either 2 or 16. g(b) is even. v2(g(b)
16) ≥ 16. So

16 | g(b)16. The condition holds.

Case 3: a is even and a ̸= 4. g(a) = 2. a ≥ 2. We need 2 | ba−g(b)2. If b is odd, ba is odd.
g(b) = 1. ba − g(b)2 is odd-1=even. If b is even. ba is even (since a ≥ 2). g(b) ∈ {2, 16}.
g(b) is even, so g(b)2 is even. ba − g(b)2 is even. The condition holds.

The function g(n) is bonza.
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Conclusion

We have proved that f(n) ≤ 4n for all bonza functions f , so c ≤ 4. We have constructed
a bonza function g(n) such that g(4)/4 = 4, so c ≥ 4. Therefore, the smallest real
constant c is 4.

8



Gemini Deep Think for International Mathematical Olympiad 2025

Problem 4

A proper divisor of a positive integer N is a positive divisor of N other than N itself.

The infinite sequence a1, a2, . . . consists of positive integers, each of which has at
least three proper divisors. For each n ⩾ 1, the integer an+1 is the sum of the three
largest proper divisors of an.

Determine all possible values of a1.

We want to determine all possible values of a1 such that the sequence defined by
an+1 = S(an) is an infinite sequence of positive integers, where S(N) is the sum of the
three largest proper divisors of N , and each an has at least three proper divisors (i.e.,
the total number of divisors τ(an) ≥ 4).

Let R(N) = S(N)/N . If τ(N) ≥ 5, and 1 = d1 < d2 < d3 < d4 are the smallest divisors
of N , then R(N) = 1

d2
+ 1

d3
+ 1

d4
.

Step 1: Proving that an is even for all n.

Suppose N is odd and τ(N) ≥ 4. The divisors of N are odd. If τ(N) ≥ 5, d2 ≥ 3, d3 ≥
5, d4 ≥ 7. R(N) ≤ 1

3 + 1
5 + 1

7 = 71
105 < 1. If τ(N) = 4, N = p3 or N = pq for odd

primes p < q. The proper divisors are 1, p, p2 or 1, p, q. S(p3) = 1 + p+ p2. For p ≥ 3,
p3 − (1 + p+ p2) = p2(p− 1)− p− 1 ≥ 9(2)− 3− 1 = 14 > 0. S(pq) = 1 + p+ q. For
p ≥ 3, q ≥ 5, pq − (1 + p + q) = (p − 1)(q − 1) − 2 ≥ 2 · 4 − 2 = 6 > 0. In all cases,
S(N) < N . Furthermore, the three largest proper divisors are odd, so their sum S(N) is
odd.

If an were odd for some n. Since τ(an) ≥ 4 by the problem statement, an+1 = S(an) < an
and an+1 is odd. By induction, (ak)k≥n would be a strictly decreasing infinite sequence
of positive integers. This contradicts the Well-Ordering Principle. Thus, an is even for
all n.

Step 2: Proving that an is divisible by 3 for all n.

Suppose N is even, τ(N) ≥ 4, and 3 ∤ N . d2 = 2. Since 3 ∤ N , d3 ≥ 4. If τ(N) ≥ 5,
d4 ≥ 5. R(N) ≤ 1

2 + 1
4 + 1

5 = 19
20 < 1. If τ(N) = 4. N = 8 or N = 2p (prime p ≥ 5).

S(8) = 7 < 8. S(2p) = p+ 3 < 2p. In all cases, S(N) < N .

We prove a lemma: Lemma: Let N be even, τ(N) ≥ 4, and 3 ∤ N . If 3|S(N), then
S(N) is odd. Proof: If τ(N) = 4, S(8) = 7, S(2p) = p + 3. Since 3 ∤ p, 3 ∤ p + 3. So
3 ∤ S(N). The implication holds vacuously. If τ(N) ≥ 5. R(N) = 1

2 +
1
d3

+ 1
d4
. Since 3 ∤ N ,

3 ∤ di. If 3|S(N), since 3 ∤ N , we must have v3(R(N)) > 0. R(N) = d3d4+2d3+2d4
2d3d4

. The
denominator is not divisible by 3. The numerator X = d3d4+2d3+2d4 must be divisible
by 3. X ≡ d3d4−d3−d4 ≡ (d3−1)(d4−1)−1 (mod 3). X ≡ 0 =⇒ (d3−1)(d4−1) ≡ 1
(mod 3). This requires d3 ≡ 2 and d4 ≡ 2 (mod 3). If 4|N . Since 3 ∤ N , the divisors start
1, 2, 4. So d3 = 4. But 4 ≡ 1 (mod 3), contradicting d3 ≡ 2 (mod 3). Thus v2(N) = 1.
N = 2M with M odd, 3 ∤ M . Let p be the smallest prime factor of M (p ≥ 5). d3 = p.
We need p ≡ 2 (mod 3). d4 is the next smallest divisor. 2p ≡ 2(2) = 4 ≡ 1 (mod 3).
Since d4 ≡ 2 (mod 3), d4 ̸= 2p. So d4 must be the next smallest divisor of M , call it m3.
d4 is odd. S(N) = N/2+N/p+N/d4 = M+2M/p+2M/d4. Since M is odd and p, d4 are
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odd divisors of M , M/p and M/d4 are odd integers. S(N) = Odd+Even+Even = Odd.
The lemma is proved.

Now, suppose 3 ∤ an for some n. We know an is even and an+1 = S(an) < an. If
3|an+1, by the Lemma applied to an, an+1 must be odd. This contradicts Step 1. Thus
3 ∤ an+1. By induction, (ak)k≥n is a strictly decreasing infinite sequence of positive
integers. Contradiction. Therefore, 3|an for all n.

Combining Step 1 and Step 2, 6|an for all n. Note that 6|N implies τ(N) ≥ 4.

Step 3: Analyzing the dynamics when 6|N .

If 6|N , the smallest divisors are 1, 2, 3. The fourth smallest divisor d4 must be 4, 5, or
6. R(N) = 1

2 + 1
3 + 1

d4
= 5

6 + 1
d4
. (This holds even if τ(N) = 4, i.e., N = 6, where

S(6) = 6, R(6) = 1, and d4 is formally N = 6).

We identify three regimes: Regime A (Growth): d4 = 4. Occurs if 12|N . R(N) = 13/12.
Regime B (Boost): d4 = 5. Occurs if 30|N and 4 ∤ N (v2(N) = 1). R(N) = 31/30.
Regime C (Fixed Point): d4 = 6. Occurs if 6|N, 4 ∤ N, 5 ∤ N . R(N) = 1.

Step 4: Evolution of the sequence and constraints on a1.

If an ∈ B. v2(an) = 1. an+1 = (31/30)an. v2(an+1) = v2(an) + v2(31/30) = 1 − 1 = 0.
an+1 is odd. This contradicts Step 1. Thus, the sequence must remain in A ∪ C.

If an ∈ A. an+1 = (13/12)an. v2(an+1) = v2(an) − 2. v3(an+1) = v3(an) − 1. Since
6|ak for all k, v2(ak) ≥ 1 and v3(ak) ≥ 1. As the valuations decrease in Regime A, the
sequence cannot stay in A indefinitely. It must eventually reach Regime C and stabilize
there (an+1 = an).

In Regimes A (R = 13/12) and C (R = 1), v5(R(N)) = 0. Thus v5(an) is constant. Let L
be the stable value in C. By definition of C, 5 ∤ L. So v5(L) = 0. Therefore, v5(a1) = 0.

Step 5: Characterization of a1.

Let K ≥ 0 be the number of steps the sequence spends in Regime A before reaching
Regime C. a1, . . . , aK ∈ A (if K ≥ 1) and aK+1 ∈ C. Since 5 ∤ a1, 5 ∤ an for all n.

Let A = v2(a1) and B = v3(a1). aK+1 = (13/12)Ka1. v2(aK+1) = A− 2K. v3(aK+1) =
B − K. Since aK+1 ∈ C, we must have v2(aK+1) = 1 (as 6|aK+1 and 4 ∤ aK+1) and
v3(aK+1) ≥ 1. A− 2K = 1 =⇒ A = 2K + 1. B −K ≥ 1 =⇒ B ≥ K + 1.

We verify that these conditions are sufficient. We must ensure ai ∈ A for 1 ≤ i ≤ K.
This means 12|ai. For 1 ≤ i ≤ K: v2(ai) = A− 2(i− 1) = 2K +1− 2i+2 = 2(K − i)+ 3.
Since i ≤ K, v2(ai) ≥ 3. v3(ai) = B − (i − 1) ≥ (K + 1) − (i − 1) = K − i + 2. Since
i ≤ K, v3(ai) ≥ 2. Thus 23 · 32 = 72 divides ai. This implies 12|ai, so ai ∈ A. This also
ensures that ai+1 = (13/12)ai is an integer. The sequence is valid.

We express the possible values of a1. a1 = 22K+13BM , where K ≥ 0, B ≥ K + 1, and
M is a positive integer such that gcd(M, 30) = 1 (since v5(a1) = 0). We rewrite this
as: a1 = (22K+13K+1) · (3B−(K+1)M). 22K+13K+1 = (2 · 4K) · (3 · 3K) = 6 · (12K). Let
J = 3B−K−1M . J is a positive integer. Since gcd(M, 30) = 1, J is not divisible by 2 or 5.
That is, gcd(J, 10) = 1. Conversely, any positive integer J such that gcd(J, 10) = 1 can be
represented in this form for a given K (by taking B = K+1+v3(J) and M = J/3v3(J)).

The set of all possible values of a1 consists of the integers of the form 6J · 12K , where
K ≥ 0 is an integer and J is a positive integer such that gcd(J, 10) = 1.
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Problem 5

Alice and Bazza are playing the inekoalaty game, a two-player game whose rules
depend on a positive real number λ which is known to both players. On the nth

turn of the game (starting with n = 1) the following happens:

• If n is odd, Alice chooses a nonnegative real number xn such that

x1 + x2 + · · ·+ xn ⩽ λn.

• If n is even, Bazza chooses a nonnegative real number xn such that

x21 + x22 + · · ·+ x2n ⩽ n.

If a player cannot choose a suitable number xn, the game ends and the other player
wins. If the game goes on forever, neither player wins. All chosen numbers are
known to both players.

Determine all values of λ for which Alice has a winning strategy and all those for
which Bazza has a winning strategy.

We determine the values of λ for which Alice has a winning strategy and those for which
Bazza has a winning strategy. Let Sn =

∑n
i=1 xi and Qn =

∑n
i=1 x

2
i . Alice (A) plays at

odd n, ensuring xn ≥ 0 and Sn ≤ λn. Bazza (B) plays at even n, ensuring xn ≥ 0 and
Qn ≤ n. The critical value for λ is 1√

2
.

Case 1: 0 < λ < 1√
2
. Bazza has a winning strategy.

Let δ =
√
2− 2λ. Since λ < 1√

2
, we have δ > 0.

Bazza’s strategy (B-MaxQ) is to ensure Q2k = 2k at every turn n = 2k. This requires
choosing x2k =

√
2k −Q2k−1. This is feasible if Q2k−1 ≤ 2k.

Let Ck be the budget available to Alice at the start of turn 2k−1: Ck = λ(2k−1)−S2k−2

(with S0 = 0). Alice must choose x2k−1 ∈ [0, Ck]. If Ck < 0, Alice loses immediately.

We analyze the evolution of Ck, assuming the game continues and Bazza follows B-MaxQ.
Ck+1 = λ(2k + 1)− S2k = Ck + 2λ− (x2k−1 + x2k).

If Bazza successfully follows B-MaxQ up to turn 2k, then Q2k = 2k and Q2k−2 = 2k − 2.
Thus, x22k−1 + x22k = Q2k −Q2k−2 = 2. Since xi ≥ 0, (x2k−1 + x2k)

2 = 2+ 2x2k−1x2k ≥ 2,

so x2k−1 + x2k ≥
√
2.

Therefore, Ck+1 ≤ Ck + 2λ−
√
2 = Ck − δ.

We must verify that B-MaxQ is always feasible as long as the game continues (i.e., Ck ≥ 0).
We proceed by induction. C1 = λ. Since δ > 0, if Ck ≥ 0, the sequence Ck is strictly
decreasing. Thus Ck ≤ C1 = λ. Since λ < 1/

√
2. Alice must choose x2k−1 ≤ Ck < 1/

√
2.

If Bazza maintained Q2k−2 = 2k − 2, then Q2k−1 = Q2k−2 + x22k−1 = 2k − 2 + x22k−1 <
2k − 2 + 1/2 = 2k − 3/2. Since Q2k−1 < 2k, Bazza can choose x2k to achieve Q2k = 2k.
B-MaxQ is always feasible.

11
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Since Ck+1 ≤ Ck − δ, the budget decreases by at least δ in each round pair. Ck ≤
C1 − (k − 1)δ = λ − (k − 1)δ. Since λ is fixed and δ > 0, there exists an integer K
such that (K − 1)δ > λ. For this K, CK < 0. At turn 2K − 1, Alice needs to choose
x2K−1 ≥ 0 such that x2K−1 ≤ CK . Since CK < 0, no such choice exists. Bazza wins.

Case 2: λ > 1√
2
. Alice has a winning strategy.

Consider the function h(K) = K
√
2

2K−1 for K ≥ 1. h(K) is strictly decreasing and

limK→∞ h(K) = 1/
√
2. Since λ > 1/

√
2, there exists an integer K ≥ 1 such that

λ > h(K). This implies L = λ(2K − 1) > K
√
2.

Alice’s strategy (A-Spike-K): Play x2i−1 = 0 for i = 1, . . . ,K − 1. At turn 2K − 1, play
the maximum possible value.

First, we verify the feasibility. For i < K, Alice plays x2i−1 = 0. She needs S2i−1 =
S2i−2 ≤ λ(2i− 1). Bazza is constrained by Q2i−2 ≤ 2(i− 1). By the QM-AM inequality
(or Cauchy-Schwarz), S2i−2 ≤

√
(i− 1)Q2i−2 ≤

√
(i− 1)2(i− 1) = (i− 1)

√
2. We check

the constraint: (i− 1)
√
2 ≤ λ(2i− 1), or λ ≥ (i−1)

√
2

2i−1 . The RHS is an increasing sequence

converging to 1/
√
2. Since λ > 1/

√
2, the strategy is feasible.

Now we analyze the outcome. Let N = K − 1. Bazza has made N moves yi = x2i
(i = 1, . . . , N). At turn 2K − 1, Alice plays x2K−1 = L− S2N . Since S2N ≤ N

√
2 and

L > K
√
2 = (N + 1)

√
2, x2K−1 >

√
2 > 0.

Alice wins if Bazza cannot move at turn 2K, i.e., Q2K−1 > 2K. Q2K−1 = Q2N + (L−
S2N )2.

Bazza aims to minimize this quantity subject to his constraints: yi ≥ 0 and
∑i

j=1 y
2
j ≤ 2i.

These constraints imply Q2N ≤ 2N , and consequently S2N ≤ N
√
2.

Let F (y) = Q2N (y) + (L− S2N (y))2. Consider the strategy y∗ = (
√
2, . . . ,

√
2). This is

feasible for Bazza as
∑i

j=1(
√
2)2 = 2i. Let S∗ = N

√
2 and Q∗ = 2N .

Let y be any feasible strategy for Bazza. Let ∆S = S∗ − S2N (y) ≥ 0. We compare
F (y) with F (y∗). We use the identity

∑
(yi −

√
2)2 = Q2N (y) − 2

√
2S2N (y) + 2N .

Q2N (y) − Q∗ = Q2N (y) − 2N =
∑

(yi −
√
2)2 + 2

√
2S2N (y) − 4N . 2

√
2S2N (y) =

2
√
2(S∗ −∆S) = 4N − 2

√
2∆S. Q2N (y)−Q∗ =

∑
(yi −

√
2)2 − 2

√
2∆S.

F (y)− F (y∗) = Q2N (y)−Q∗ + (L− S2N (y))2 − (L− S∗)2. (L− S2N (y))2 = (L− (S∗ −
∆S))2 = (L− S∗)2 + 2(L− S∗)∆S + (∆S)2.

F (y) − F (y∗) =
(∑

(yi −
√
2)2 − 2

√
2∆S

)
+ 2(L − S∗)∆S + (∆S)2. F (y) − F (y∗) =∑

(yi −
√
2)2 + 2(L− S∗ −

√
2)∆S + (∆S)2.

By the choice of K, L > K
√
2 = (N + 1)

√
2 = S∗ +

√
2. Let ϵ = L − S∗ −

√
2 > 0.

F (y) − F (y∗) =
∑

(yi −
√
2)2 + 2ϵ∆S + (∆S)2. Since all terms are non-negative,

F (y) ≥ F (y∗). The minimum value of Q2K−1 is F (y∗).

Q2K−1 ≥ F (y∗) = 2N + (L − N
√
2)2 = 2N + (

√
2 + ϵ)2. Since ϵ > 0, (

√
2 + ϵ)2 > 2.

Q2K−1 > 2N + 2 = 2K. Bazza cannot move at turn 2K. Alice wins.

Case 3: λ = 1√
2
. Neither player has a winning strategy.

We show that both players have a strategy to ensure the game continues forever (a
draw).
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1. Alice’s drawing strategy (A-Zero): x2k−1 = 0 for all k. We verify the game continues
forever. Alice’s feasibility at turn 2k − 1: We need S2k−2 ≤ λ(2k − 1). Bazza maximizes
S2k−2 subject to Q2k−2 ≤ 2k − 2, achieving at most (k − 1)

√
2. We check: (k − 1)

√
2 ≤

1√
2
(2k−1) ⇐⇒ 2k−2 ≤ 2k−1. True. Bazza’s survival at turn 2k: We need Q2k−1 ≤ 2k.

Q2k−1 = Q2k−2 ≤ 2k − 2 < 2k. Bazza survives. Alice’s survival at turn 2k + 1: We need
S2k ≤ λ(2k + 1). Bazza maximizes S2k subject to Q2k ≤ 2k, achieving at most k

√
2. We

check: k
√
2 ≤ 1√

2
(2k + 1) ⇐⇒ 2k ≤ 2k + 1. True. The game continues forever. Bazza

cannot win.

2. Bazza’s drawing strategy (B-MaxQ): Q2k = 2k. We verify the game continues
forever. Bazza’s feasibility (survival). As shown in Case 1, if Bazza follows B-MaxQ,
S2k−2 ≥ (k−1)

√
2. Alice’s budget Ck = λ(2k−1)−S2k−2. Ck ≤ 1√

2
(2k−1)−(k−1)

√
2 =

2k−1−2(k−1)√
2

= 1√
2
. Alice must choose x2k−1 ≤ 1/

√
2. Then Q2k−1 = 2k − 2 + x22k−1 ≤

2k − 2 + 1/2 < 2k. B-MaxQ is feasible. Bazza survives.

Alice’s survival. We must show Ck > 0 for all k. C1 = 1/
√
2 > 0. Ck+1 = Ck +

2λ − (x2k−1 + x2k) = Ck +
√
2 − (x2k−1 + x2k). Bazza ensures x22k−1 + x22k = 2. Let

g(t) = t +
√
2− t2. Ck+1 = Ck +

√
2 − g(x2k−1). Alice chooses x2k−1 ∈ [0, Ck]. To

ensure Alice survives, we check the minimum possible budget for the next turn. Since
Ck ≤ 1/

√
2 < 1 and g(t) is increasing on [0, 1] (as g′(t) = 1− t/

√
2− t2 > 0 for t < 1),

g(x2k−1) is maximized when x2k−1 = Ck. Ck+1 ≥ Ck +
√
2 − g(Ck) =

√
2 −

√
2− C2

k .

If Ck > 0, then
√

2− C2
k <

√
2, so Ck+1 > 0. By induction, Ck > 0 for all k. Alice

survives. The game continues forever. Alice cannot win.

Conclusion: Alice has a winning strategy if and only if λ > 1√
2
. Bazza has a winning

strategy if and only if 0 < λ < 1√
2
. If λ = 1√

2
, neither player has a winning strategy.
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